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Pattern dynamics in bidimensional oscillatory media with bistable inhomogeneities
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By means of numerical simulations, we study pattern dynamics in selected examples of inhomogeneous
active media described by a reaction diffusion model of the activator-inhibitor type. We consider inhomoge-
neities corresponding to a variation in space of the~nonlinear! reaction characteristics of the system or the
diffusion constants. Three different bidimensional systems are analyzed: an oscillatory medium in a square
reactor with a circular central bistable domain, and cases of a bistable stripe immersed in an oscillatory
medium in a trapezoidal reactor and in a rectangular reactor with inhomogeneous diffusion. The different types
of complex behavior that arise in these systems are analyzed.
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I. INTRODUCTION

The phenomena of pattern formation are ubiquitous
almost all branches of scientific endeavor, ranging fr
physics and chemistry to biology and technology@1#. Among
the different possible model descriptions of pattern form
systems, the reaction-diffusion models of the activat
inhibitor type@2,3# have provided a useful theoretical fram
work in all areas.

In a recent paper@4# we analyzed, in a unidimensiona
simple model, the effect of the presence of inhomogenei
in an otherwise homogeneous active system. We foun
richer spread of behaviors than those occurring in typ
bistable, oscillatory, or excitable homogeneous active me
The pattern formation phenomena arising in each kind
homogeneous active medium have their own characteris
@3#: in bistable media we have front structures separa
quasihomogeneous domains where the system is in on
the two stable states of the uncoupled system. Example
such structures include moving fronts in one-dimensio
systems@3,5# and labyrinthine structures in bidimension
systems@6#. The most common examples of patterns aris
in models of excitable media@3# are traveling pulses, spira
patterns and more complex structures of vortices in th
dimensions. Those models are useful to describe chem
systems such as the Belousov-Zhabotinskii and related r
tions, and also to describe biological systems such as ne
or cardiac tissues@2,3,7#. In oscillatory systems, the mos
typical structures appearing are homogeneous oscillati
Turing patterns, and spiral patterns@1,3#.

In Ref. @4#, the case of a finite unidimensional oscillato
medium with an immersed bistable spot, with nonfl
boundary conditions in6L, was analyzed. The reaction di
fusion model considered was@8,9#
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u̇5¹2u1 f ~u!2v,

v̇5Dv¹2v1u2gv, ~1!

where f (u)52u31u characterizes the nonlinearity of th
medium. The inhomogeneity was introduced in the mo
through a spatial dependence on the parameterg, settingg
5g(x)[0.915 exp(210x4). This leads tog.0.9,1 for
uxu.0.8 ~oscillatory medium! and g.1 for uxu,0.8
~bistable medium!. In addition to stationary, oscillatory, an
Turing patterns, quasiperiodic inhomogeneous oscillati
and spatiotemporal chaos were also found. States belon
to the homogeneous limit cycle, which exist for the caseg
50.9, were considered as initial conditions. This choice c
responds to the idea of having an initially homogeneous
cillatory medium which is suddenly modified in a localize
region ~for example, by lighting photosensitive chemical r
actions in gels@10#!. In the central bistable region, the field
rapidly converge to the values (u6.60.8,v6.60.14) of a
homogeneous bistable system withg5g(x50)55.9 (6 de-
pending on the initial condition@11#!, while the rest of the
system evolves to different asymptotic behaviors. Note t
Eqs. ~1! have an odd symmetry, implying that
@u(x,t),v(x,t)# is a solution, then@2u(x,t),2v(x,t)# is a
solution as well. In Fig. 1 we show the phase diagram in
cating the asymptotic behavior of the system@stationary pat-
terns ~SP’s!, Turing ~TP!, inhomogeneous periodic oscilla
tions ~PO’s!, quasiperiodic ~QP!, and chaotic ~CH!# as
functions of the parametersDv and L. Here it is worth re-
marking that the error in the determination of the position
the transition lines is of the order of the width of the plott
lines in the picture.

What we here call stationary patterns appear for smaL
~smaller than two Turing wavelengths of the medium@4#! as
a consequence of the relative large size of the bistable
that prevents the system from asymptotically perform
temporal oscillations. The Turing patterns, that are also
tionary, have a completely different origin~they are a con-
©2001 The American Physical Society13-1
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sequence of the Turing diffusional instability of the m
dium!, and arise for larger systems@4#.

In this work we continue the line of research started
Ref. @4#, analyzing more realistic bidimensional system
combining oscillatory and bistable domains. The aim of t
paper is to present, in a descriptive way, some example
inhomogeneous situations in bidimensional systems lea
to different kinds of complex dynamics. We do not inte
here to describe all the possible complex dynamics that co
arise in the kinds of systems studied. Instead, we wan
show that a wide spectrum of possibilities appears w
some kind of inhomogeneous situations is considered.
goal will be to attract the interest of experimentalists to stu
inhomogeneous pattern forming systems with characteris
similar to those here analyzed.

We will extend the previous theoretical analysis to so
situations that are generalizations of the unidimensional c
studied in Ref.@4#: a square oscillatory medium with a ce
tral circular bistable spot, a rectangular oscillatory medi
with a bistable stripe and inhomogeneous diffusion, an
trapezoidal oscillatory medium with a bistable stripe. T
first case is the simplest of all of these. However, suc
system exhibits some new interesting dynamical characte
tics. The other two cases are nontrivial generalizations of
system discussed in Ref.@4#. The case of the rectangula
system corresponds to the coupling between unidimensi
systems with different inhibitor diffusions~that is, sweeping
in a vertical direction in the phase diagram of Fig. 1!. The
case of the trapezoidal system corresponds to the coup
between unidimensional systems with different lengths~that
is, sweeping in a horizontal direction in the phase diagram
Fig. 1!. In this way we expect to see the result of the mixin
in a bidimensional system, of the different behavio
~phases! occurring in the swept region of the phase diagr
of the unidimensional system. Hence we will be studyi
examples of pattern forming systems that couple, say, c

FIG. 1. Phase diagram@(L,Dv) plane# corresponding to a one
dimensional inhomogeneous system consisting of an oscilla
medium with a central bistable spot. The regions correspondin
stationary patterns, periodic oscillations, Turing patterns, and q
siperiodic and chaotic behaviors are indicated by SP, PO, TP,
and CH, respectively.
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otic regions, with others that are, for instance, periodic
Turing-like.

In this paper we will work with finite systems. We want t
remark here that the size of the system is always a rele
parameter in our studies, as the asymptotic regime depe
on this. Also, boundary conditions are important in determ
ing the dynamics: all the results in this paper are for nonfl
~Neumann! boundary conditions, which is the usual choi
when dealing with chemical systems. However, some
merical studies, that are in progress, have shown us
similar results may be obtained using more general parti
reflective conditions@]u(L)/]x5ku(L)# for small enough
values ofk, the albedo~or reflectivity! parameter.

Similarly to what was done in Ref.@4#, in the three prob-
lems studied in this work we will consider homogeneo
initial conditions belonging to the limit cycle existing for a
homogeneous system withg50.9. As explained above fo
the case of a unidimensional system, the inhomogeneitie
the media are assumed to be caused by an external me
nism, and to appear in a sudden way when the system~which
is originally purely oscillatory! is performing an homoge
neous periodic motion.

The experimental observation of the predicted behav
might be realized by adequately designing chemical or e
trical systems@12# sharing the properties of the models he
discussed. One simple option seems to work with chem
systems. The idea is to prepare the system~for instance
Belousov-Zhabotinskii or CIMA-like reactions! with photo-
sensitive catalyzers or reactants, allowing us to create in
mogeneities by illuminating some adequately selected a
@13#. Another option is to work with inhomogeneous ge
providing, for example, a way to obtain a inhomogeneo
diffusivity @14#. Clearly, it is also possible to explore mixe
situations.

All numerical calculations have been made as follow
First, different systems of partial differential equations we
approximated by systems of coupled ordinary differen
equations, obtained by finite difference schemes. Second
resulting equations were solved by a Runge-Kutta 2 meth
Different space and time discretizations schemes were
ployed in order to check the results.

The details of the functional forms chosen for introduci
the inhomogeneities ing—in the one-dimensional problem
discussed in Ref.@4# and also in the bidimensional problem
analyzed in the following sections—are irrelevant, as ext
sively checked in simulations. The relevant fact is the cho
of the coupling between bistable and oscillatory regio
~with sharp interfaces!. Furthermore, in the unidimensiona
problem, even the size of the bistable spot is unimportant
for example, an increase of this parameter causes on
slight shift of the transitions lines but preserves all the str
ture of the phase diagram unchanged. This is because, in
unidimensional problem, the bistable region acts almos
an effective boundary condition. The robustness of the
sults with respect to changes in the functional form ofg(x)
also becomes apparent as, when trying different spatial
cretizations~that cause the function to be evaluated in diffe
ent positions!, the results remains essentially unchanged.
the calculations for the bidimensional systems analyzed
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FIG. 2. Contour plots of theu field for five
different times during a period of the motio
ocurring for ~a! Dv50, L525, and r 050.5
~symmetric periodic oscillation!; and ~b! Dv
51, L525, and r 052.5 ~asymmetric periodic
oscillation!. In both cases, from left to right, the
plots correspond to times t0 , t01t/4, t0

1t/2, t013t/4, and t01t. With t0 in the
asymptotic regime andt the measured period o
the motion.
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this paper have been done using much finer spatial disc
zations than the one needed to clearly identify the kind
regime appearing in the system for the values of parame
considered.

The organization of the paper is as follows: in Sec. II w
study the pattern formation in a square oscillatory medi
with a circular bistable spot. We also explain the meth
used to identify the kind of behavior occurring in the syste
~chaotic or quasiperiodic!. In Sec. III we analyze the case o
a rectangular reactor with inhomogeneous diffusion of
inhibitor while in Sec. IV we present results for a trapezoid
reactor. Section V is devoted to a discussion of results an
some conclusions.

II. SQUARE OSCILLATORY MEDIUM WITH A
CIRCULAR BISTABLE SPOT

Here we consider a nonlinear medium described by E
~1! in a geometry corresponding to a square domain (2L
<x<L,2L<y<L) with nonflux boundary conditions. We
introduce a spatial dependence for parameterg, setting
g(x,y)5g(r )50.912.5@11tanh„26(r 2r 0)…# @15#, where

r 5Ax21y2. As the system is bistable forg.1 and oscilla-
tory for g,1, with this choice ofg(r ) the medium is oscil-
latory ~with g.0.9) except in a central spot of radiusr
.r 0 where it is bistable~with g.5.9). As in the unidimen-
sional problem described in Ref.@4# ~a one-dimensional sys
tem!, we consider a homogeneous initial condition belong
to the homogeneous limit cycle of a purely oscillatory m
dium ~with g50.9). We have solved Eqs.~1! numerically
for different values ofL,Dv , andr 0.

The results for the bistable spot in two dimensions sho
similar variety of behaviors as in one dimension~stationary,
Turing, periodic, quasiperiodic, and chaotic patterns!. How-
ever, here we have one important difference added to
complexity of the dynamics: the existence of asymptotic m
tions whereu(0,0) andv(0,0) oscillate symmetrically abou
zero, instead of setting near one of the two states of
bistable media (u6 ,v6), as occurs in the one-dimension
~1D! system. For some region of parameters, such osc
tions can be interpreted as periodic~quasiperiodic or chaotic!
transitions between the two states of the bistable spot
u(0,0) @v(0,0)# oscillates symmetrically around 0 with a
amplitude similar to~but slightly lower than! u1(v1). In
other cases, the symmetrical oscillations of the bistable s
have an amplitude much smaller thanu1 and every remain-
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ing trait of bistability is lost. This phenomenon occurs f
small enough values ofr 0 andDv , and can be interpreted a
follows: in the case of strong coupling or large bistable
gion ~high Dv or r 0) the influence of the surrounding osci
latory medium is not strong enough to produce transitio
between the two states of the bistable region and the fi
adopt values near (u6 ,v6). In the opposite case~small
enoughr 0 or Dv) the influence of the surroundings is stro
ger and within the bistable region the fields oscillate arou
zero.

Figure 2 shows contour plots of theu field corresponding
to different times during a period of the asymptotic period
regime of the system for two different sets of paramete
Figure 2~a! shows the symmetric oscillation of the bistab
spot ~the center oscillates from white to black during a p
riod!, while in Fig. 2~b! the central spot remains in one of th
two states of the bistable medium. We call the asympto
regime symmetric or asymmetric depending on whether
bistable spot behaves as in Fig. 2~a! or 2~b!, respectively.

It is worth mentioning that for the 1D system, even f
very small values ofr 0 ~i.e., r 050.1), the regime is always
asymmetric~the bistable spot is always fixed in one of i
two states!. Furthermore, forr 050.05 we observed a trans
tion in the asymptotic regime from periodic to quasiperiod
~for example forDv52 andL540) that remains asymmet
ric. This important difference between the behavior of t
1D system and the bidimensional system shows the stro
influence of the surrounding oscillatory medium on t
bistable spot in the bidimensional case.

As in the 1D system, two different stationary regim
appear: for small values ofL/r 0, stationary patterns appea
as a consequence of the relatively large size of the bist
domain @4#, while for higher values ofL and Dv Turing
patterns arise. Figure 3 shows patterns corresponding to
different sets of parameters in the Turing region. The Tur
instability appears in the oscillatory medium forDv.1.7,
and coexists with the Hopf instability@4,16#. Roughly for
Dv.2.3 the Turing instability completely dominates the d
namics, that is, the system evolves to stationary spati
periodic patterns. These patterns are generated by free
fronts @4,12# that propagate from the bistable region to t
rest of the system, changing the dynamics from Hopf-like
Turing-like. The characteristic Turing wavelength islT
.13.

In the 1D system@4#, the nonstationary and nonperiod
asymptotic regimes are classified as quasiperiodic or cha
3-3
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FIG. 3. Turing patterns appearing for~a! Dv
52.5, L540, andr 050.5; and~b! Dv52.5, L
525, andr 052.5.
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by analyzing the sensibility to initial conditions. In the bid
mensional problems such a study involves a much lar
computational cost. Here, as a cheaper alternative,
present a method that allows us to determine whether
behavior is chaotic or quasiperiodic by simple glancing a
discrete temporal series. At a given spatial position (x,y) we
consider the succession$tn(x,y)% of times at whichu(x,y,t)
reaches a local maximum as function oft, i.e., the times
when

]

]t
u~x,y,t !u tn(x,y)50 ~2!

and

]2

]t2
u~x,y,t !u tn(x,y),0 ~3!

occur simultaneously. Then we define a succession

$pn~x,y!5tn~x,y!2tn21~x,y!%. ~4!

We first studied the behavior of$pn(x5L)% for the 1D sys-
tem, finding that this analysis provides a useful and sim
way to determine the character of the dynamics~periodic,
quasiperiodic, or chaotic!. In the case of periodic motion th
value of pn(L) converges to a constantp` which coincides
with the period of the global motion. In the case of quas
eriodic motion, thepn(L)’s asymptotically show a periodic
or quasiperiodic behavior. In the chaotic region, which w
defined originally as the region with a high sensitivity
initial conditions, thepn(L)’s exhibit a highly disordered
behavior. In Fig. 4 we show the typical plots of thepn(L)’s
in all three regions.

For the bidimensional problem discussed in this secti
we have studied the plots of$pn(L,L)%, finding the same
three types of behavior as in the 1D system. In the ca
where pn(L,L) converges to a constant, we have verifi
that, as in the one-dimensional case, the global motio
periodic with a period equal to that constant. We have c
sified the nonperiodic motions as quasiperiodic or cha
depending on whether the behavior of thepn(L,L)’s is like
that in Fig. 4~b! or Fig. 4~c!, respectively. A remarkable fac
05621
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here is that we have not found marginal or confused ca
where the distinction between the types of behavior is
completely clear.

In Table I we present the results of some of the calcu
tions for different values of the parametersL,r 0, and Dv ,
indicating the kind of asymptotic motion by the same n
menclature as in Fig. 1 and addingS or A according to
whether the oscillations are symmetric or asymmetric,
spectively, in the sense discussed above. In the table,
following tendencies can be appreciated, some of them be
analogous to those appearing in the 1D system, which
clearly reflected in the phase diagram of Fig. 1.

~i! For small values ofL, only stationary or periodic be
haviors are observed. The tendency to stationarity introdu
by the presence of the inhomogeneity causes the ampli
and frequency of the oscillations in the oscillatory media
decrease. For very smallL the oscillations are completel
inhibited in the whole system; for largerL, an inhomoge-
neous periodic regime~with a frequency slightly lower than
the natural of the oscillatory media! is asymptotically
reached.

~ii ! For smallDv (<1) the behavior is periodic~or sta-
tionary for very small L!. The higherDv is the richer the
spatial structure of the patterns in the PO region, due to
more efficient transmission of the effect of the inhomoge
ity.

FIG. 4. Plots ofpn(L) for a 1D system corresponding to~a!
Dv51.7, L535 ~periodic oscillations!, ~b! Dv51.7, L550 ~qua-
siperiodic motion!, and~c! Dv51.7, L580 ~chaos!.
3-4
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TABLE I. Results of the calculations for different values of the parametersL,r 0, and Dv . Here we
indicate the kind of asymptotic motion using the same nomenclature as in Fig. 1. We addS or A according
to whether the oscillations are symmetric or asymmetric, respectively.

Dv L58 L58 L525 L525 L540 L540 L560 L560
↓ r 050.5 r 050.25 r 050.5 r 052.5 r 050.5 r 052.5 r 050.5 r 052.5

0 PO-S PO-A PO-S PO-A PO-S PO-A
1 PO-S SP PO-S PO-A PO-S PO-A
1.5 PO-S SP QP-S PO-A QP-S QP-A CH-S CH-S
2 PO-S SP PO-A PO-A CH-S QP-A CH-S CH-S
2.5 SP SP PO-A TP TP TP
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~iii ! There exists a region of intermediate values ofDv
~approximately 1,Dv,2.5 depending onr 0) where quasip-
eriodic or chaotic motion may appear. Note that the va
Dv51 is a precise limit in the one-dimensional case~see
Fig. 1! for the appearance of nonperiodic behavior. This lim
corresponds to the diffusion of the inhibitor being equal
that of the activator, the last one being fixed equal to 1 in
~1!.

~iv! For smallr 0 or smallDv , the bistable spot oscillate
symmetrically around 0, as explained above.

~v! For high Dv ~approximately>2.5), Turing patterns
are generated by means of freezing fronts.

~vi! A reduction in the spot’s size can, at least in som
cases, increase the complexity of the dynamics.~For ex-
ample, causing changes from stationary to periodic, perio
to quasiperiodic or from quasiperiodic to chaotic regimes!

III. A RECTANGULAR REACTOR WITH
INHOMOGENEOUS DIFFUSION OF THE INHIBITOR

Here we consider the case of a rectangular oscillat
medium (2Lx<x<Lx ,2Ly<y<Ly) with a bistable stripe
around y50. In this case we solve Eqs.~1! with g(x,y)
5g(y)50.912.5@11tanh„26(y2y0)…#, with no flux
boundary condition and homogeneous initial conditions
before. Herey0 is ~approximately! the half width of the
bistable stripe. For homogeneous initial conditions the s
tem would be equivalent to the one-dimensional case
cussed in Ref.@4#. However, here we consider an addition
inhomogeneity in the medium: a dependence of the inhib
diffusion Dv on thex coordinate. We set

Dv5Dv01~x1Lx!
~Dv12Dv0!

2Lx
, ~5!

with Dv0,Dv1.
Now, the bidimensional system~2D system! can be

thought as a~continuous! array of coupled 1D systems an
lyzed in Ref.@4#, one for each value ofx with a value ofL
5Ly andDv5Dv(x). This 2D system can be associated w
a vertical segment in the phase diagram of Fig. 1, going fr
(Ly ,Dv0) to (Ly ,Dv1). This segment may cross one or mo
transition lines separating regions of different asymptotic
havior of the 1D system. In such cases, different parts of
2D system will tend to perform different asymptotic motion
The global long time behavior of the 2D system will emer
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as the result of the coupling and competition between
different regions, and will depend not only on the regio
involved but also on their sizes.

Here we present and discuss the results for five differ
2D systems associated with the five vertical segments i
cated with Figs. 5~a!–5~c!. In all the cases we have used th
valueLx515.

First we study the example corresponding to a case wh
the 2D system is in the periodic region of the phase diagr
of Fig. 5~a! for all values of x. The parameters areLy
530, Dv(2Lx)5Dv050, andDv(Lx)5Dv152. The glo-
bal behavior of the system is periodic. In Fig. 6~a! we show
the contour plots of theu field corresponding to differen
times during a period of motion. It can be observed that fox
near2Lx ~small Dv) the oscillation is almost homogeneou
in the y coordinate, while nearLx ~larger Dv) the spatial
structure is more complex. This can be better appreciate
Fig. 6~b!, where we show space time plots (t,y) of the u
fields for x52Lx and x5Lx . In the first case, the oscilla
tions are homogeneous, while in the latter there are perio
waves that travel from6Ly toward the bistable region
These properties are inherited from the characteristics of
1D system for the corresponding values ofDv , and are simi-
lar to those reported in Sec. II the case of the square osc
tory medium with the circular bistable spot.

FIG. 5. Phase diagram@(L,Dv) plane# corresponding to the 1D
system studied in Ref.@4#, indicating the segments associated w
different cases of the bidimensional problem analyzed in Secs
and IV.
3-5
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The second system analyzed@corresponding to the verti
cal segment~b! in Fig. 5# is in the quasiperiodic region fo
x.0(Dv.1) and in the periodic region forx,0. The pa-
rameters are Ly560, Dv(2Lx)5Dv050, and Dv(Lx)
5Dv152. In this case the global behavior is quasiperiod
In Fig. 7~a! we show space time plots of theu field for x5
2Lx , x50, andx5Lx . In the first case we note that homo
geneous oscillations~in they coordinate! alternate with trav-
eling waves going fromy56Lx to the bistable zone
Aroundx50 the behavior is similar, but there are periods

FIG. 6. ~a! Contour plots of theu field for five different times
during a period of the~periodic! motion ocurring for Dv0

50, Dv152, andLy530. From top to bottom, the plots correspon
to timest0 , t01t/4, t01t/2, t013t/4, andt01t. With t0 in the
asymptotic regime andt516.42, the measured period of the m
tion. ~b! Space-time plots of theu field at x5215 ~top! and x
515 ~bottom! for the same asymptotically periodic motion.
05621
.

f

time in which waves emerging from neary56Ly/2 appear.
For x5Lx , waves emerging from the bistable zone that a
annihilated neary56Ly/2, with others coming fromy5
6Ly can be observed. Furthermore, the typical signature
quasiperiodicity and chaos in the space time plot, which
the onset of defects~dislocations!, is also present. In this
case, the increase of complexity originated by the increas
Dv—also observed and explained in the previously stud
systems—is apparent.

Third, we analyze the case corresponding to the par
eters Ly5100, Dv(2Lx)5Dv050, and Dv(Lx)5Dv152
@segment~c! in Fig. 5#. Forx,0 the system is in the periodi
region, while forx.0 it is in the chaotic one. In this case th
global behavior is chaotic. The different kinds of waves a
pearing in the space time plots~not shown! are similar to
those of Fig. 5~b!. However, in this case the dislocation
appear not only forx.0 but also forx,0. This means that
the signature of chaos have invaded the whole system.

For the case of Fig. 5~d! @Ly580, Dv(2Lx)5Dv050,
and Dv(Lx)5Dv153#, the system has approximately on
third of its area in the periodic region, one-third the chao
region, and one-third in the Turing region. The global beh
ior is periodic. This is an unexpected result, since the sys
has a significant part of its area within the chaotic regio
Unlike Fig. 5~c!, where the chaotic behavior advances ov
the periodic zone, here the periodic and stationary~Turing!
tendencies of the corresponding zones cooperate to in
the chaotic features in the system. This case is a clear
ample of coexistence of Turing- and Hopf-like domai
@16,12#. In Fig. 7~b!, we show the contour plots of theu
fields corresponding to two different times during a period
motion. It is apparent here that the Turing pattern appea
on the right side of the system acts effectively as a bound
condition, limiting the chaotic tendency of the central part
the system.

For the case of segment~e! in Fig. 5 @Ly580, Dv
(2Lx)5Dv051.5, andDv(Lx)5Dv152.4# the system has
approximately one-third of its area in the Turing regio
while the rest is chaotic. Now the global behavior is al
chaotic. In this case, the weight of the Turing zone is n
enough to prevent the chaotic behavior. A very interest
phenomenon occurs here: in the Turing zone, the Turing
terns appear and disappear repeatedly, alternating with qu
homogeneous oscillations. The Turing pattern is genera
by freezing fronts like those described in Ref.@4#, that come
from the bistable region, live for a certain period of tim
~typically of the order of 20t0), and then are destroyed b
‘‘melting’’ fronts going from y56Ly to the bistable stripe.
In Fig. 8 we show a space time plot exhibiting this pheno
enon.

The five cases discussed in this section clearly illustra
the wide spectrum of possibilities that arises when consid
ing inhomogeneous situations where regions of differ
‘‘natural’’ behaviors are coupled. Such systems, beyond
problem of combination of bistable and oscillatory med
are in fact examples of pattern forming systems that cou
regions showing chaotic behavior with others that have
periodic or Turing-like behavior. In Sec. IV we will continu
3-6
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FIG. 7. ~a! Space-time plots for theu field
corresponding to the system withLy560, Dv
(2Lx)50, andDv(Lx)52. The plots are forx
5215, x50, andx515 from top to bottom.~b!
Contour plots of theu field for two different
times ~differing in half period! in the periodic
motion ocurring for Dv050, Dv152, and Ly

530. Calculations correspond to Fig. 5~d!.
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with this general view, analyzing a different inhomogeneo
situation in a trapezoidal reactor.

IV. A TRAPEZOIDAL REACTOR

Here we present some results for the case of a trapezo
reactor containing an oscillatory medium with a bistab
stripe. We consider a system with 0<x<Lx andLy5Ly(x)
5L01ax, fixing Neumann boundary conditions and unifor
initial conditions as usual. The inhomogeneity is the same
in the problem of Sec. III, given byg(x,y)5g(y)50.9
12.5@11tanh„26(y2y0)…#, implying a bistable stripe of a
half width approximately equal toy0 aroundy50. The rest
of the medium is oscillatory withg.0.9.

In this case, the system can be thought as a~continuous!
array of coupled 1D systems~one for each value ofx), each
one with a different length~sinceLy depends onx), and a
05621
s

al

s

uniform value ofDv . Similarly to the case analyzed in Se
III, with this 2D system we can associate a now horizon
segment in the phase diagram of Fig. 1, going fro
@Ly(0),Dv) to (Ly(Lx),Dv#, that may cross one or mor
transition lines. The system shows different asymptotic g
bal behavior depending onLy(0), a, and Dv , that can be
~as in the other analyzed systems! stationary, periodic, qua
siperiodic, chaotic or Turing-like. In Fig. 9 we show th
contour plots of theu field at two different times in the
asymptotic regime for a case in which the behavior is c
otic.

Here we report the analysis of two particular examp
corresponding to two different horizontal segments in
quasiperiodic region of the phase diagram of the 1D sys
@which are shown in Figs. 5~f! and 5~g!#. In both cases we
have fixed Lx530. The segment in Fig. 5~f! @Ly(0)
545, Dv51.9, anda51/3# crosses a small chaotic window
h

ar-
FIG. 8. Space-time plot of theu field for
x5Lx , corresponding to the system wit
Ly580, Dv(2Lx)51.5, and Dv(Lx)52. We
observe the intermittent appearing and disappe
ing of the Turing pattern.
3-7
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while the segment of Fig. 5~g! @Ly(0)545, Dv51.5, and
a51/3# lies completely within the quasiperiodic region
the phase diagram. In Fig. 10 we show the plots
pn@Lx ,Ly(Lx)# for both cases, from which it can be see
that the behavior is chaotic in the case of the Fig. 5~f! and
quasiperiodic in the case of Fig. 5~g!. It is worth remarking
here that in the first case the presence of the small cha
window is enough to induce the chaotic behavior in t
whole system. Note that the signal in Fig. 10~a! is measured
in a position@the right end of Fig. 5~f!# where, according to
the original diagram, it should behave as a quasiperio
~nonchaotic! one.

V. FINAL REMARKS

We have presented three different examples of bidim
sional inhomogeneous pattern-forming systems, each
sisting of an oscillatory medium with a bistable domain,
different geometries with Neumann boundary conditio
The work extends the studies started in Ref.@4#, where a
simple unidimensional inhomogeneous system was analy
Such systems correspond to examples of pattern-form
systems coupling regions where the dynamics is chao
with others where the dynamics is periodic or Turing-lik
We expect that the results obtained here should be ubiqui

FIG. 9. Contour plots of theu field for a trapezoidal system a
two different times~differing approximately by half the characte
istic period of the oscillatory medium withg50.9). The parameters
areLx5192, Ly(x50)530, a50.25, andDv51.3.
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for inhomogeneous media having the geometrical distri
tion of bistable and oscillatory regions discussed here,
would not depend on the specific model equations con
ered.

Due to the expected connection with experimental set
using photosensitive catalyzers, we have focused on a ho
geneous initial condition, as this is one of the most relev
cases. The choice of other kinds of initial conditions m
cause the asymptotic regime to be different from those fo
for homogeneous initial conditions, and may also lead
regimes not predicted here. A more general analysis of pr
lems with arbitrary initial conditions is clearly beyond th
scope of this paper.

In the first example we studied, which corresponds to
case of a square oscillatory medium with a central circu
bistable domain, we observed an important difference fr
the results of the unidimensional system found in Ref.@4#.
This difference appears in the possibility of observing jum
between the two states of the bistable domain, which
induced by the surrounding oscillatory medium or, equiv
lently, a symmetric oscillation of the fields in the bistab
domain around the zero value. Apart from this phenomen
we again found the same diversity of behavior~including
Turing patterns, spatiotemporal chaos, etc.! as in the unidi-
mensional system.

As explained in Sec. I, referring to the unidimension
case, Eqs. ~1! have odd symmetry, implying that i
@u(x,t),v(x,t)# is a solution, then@2u(x,t),2v(x,t)# is a
solution as well. This symmetry is clearly also present in
bidimensional case. For those cases where the bistable
tral region converges to one of its stable states~all the stud-
ied cases with the exception of the symmetric motions
Sec. II!, a general bistability behavior exists.

FIG. 10. Plots ofpn@Lx ,Ly(Lx)# for trapezoidal systems corre
sponding to~a! Fig. 5~f! and ~b! Fig. 5~g!.
3-8
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The second example we studied corresponds to a rec
gular oscillatory medium with a bistable stripe with inhom
geneous diffusion of the inhibitor~varying linearly along the
direction of the stripe!. In this case~at least for the widths of
the stripe considered!, the bistable domain remains fixed
one of the two possible states. Depending on the value
the minimum and maximum diffusion of the inhibitor, an
on the length of the system in the direction normal to
bistable stripe, we found different kinds of global behav
~again including and quasiperiodic oscillations, chaos,
stationary—Turing—patterns!. We have analyzed the differ
ent spatiotemporal waves appearing, viewing the system
set of coupled unidimensional systems like the one studie
Ref. @4#. Among other phenomena, we found the coexiste
of Turing- ~in the region of highDv) and Hopf-like~in the
region with smallDv) @16,12# behaviors in a globally peri-
odic regime; and the consequent production and annihila
of a Turing pattern~which alternates with temporal inhomo
geneous oscillations! occurring in a globally chaotic system

The third example we studied corresponds to a trapezo
oscillatory medium with a bistable stripe that can be seen
a coupling between unidimensional systems with the sa
inhibitor diffusion but different lengths. The existence of d
ferent complex behaviors is also apparent. In particular,
have seen that sweeping through a small chaotic wind
may be enough to induce chaotic behavior in the whole s
tem.

In all the analyzed examples~and also in the unidimen
sional problem referred to in Sec. I!, the Turing patterns are
generated by means of freezing fronts that travels from
bistable domain to the rest of the system, changing the
namics of the oscillatory media from Hopf-like to Turing
like. The spatially periodic patterns generated in such a w
have ~essentially! a single wave vector which is normal t
the boundary of the bistable domain~parallel to the direction
s.
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of propagation of the freezing front!. However, in the prob-
lem studied in Sec. II~see Fig. 3!, the Turing patterns doe
not have the symmetry of the circular bistable spot, a
consequence of the square shape of the system and the
mann boundary conditions.

To distinguish between chaotic and quasiperiodic beh
iors, we have introduced a simple method in which we a
lyze a temporal signal taken from a unique spatial positi
In this way we avoid the calculation of the Lyapunov exp
nents, which implies a large computational cost for the bi
mensional systems.

It is also worth mentioning here that in this work we ha
focused on solutions with some spatial symmetry. For
ample, in the cases discussed in Secs. III and IV, the s
tions have even parity in they coordinate. For some particu
lar sets of parameters within the chaotic regime, we h
observed a numerical breaking@17# of this symmetry. In the
studied cases, these effects~that are common when usin
finite difference schemes for solving reaction diffusion equ
tions! were suppressed by improving the spatial discreti
tion, though at the price of increasing the computatio
time. A less time consuming option for further analysis
the chaotic dynamics in the systems analyzed here coul
provided by pseudospectral methods@17#. A richer charac-
terization of the chaotic behavior in this kind of system, e
ploiting the biorthogonal decomposition method@18# as well
as some topological analysis of chaotic time series@19#, will
be the subject of further work.
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